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Abstract—A novel method is proposed for the classification of
epithelial cells and clue cells in wet mount microscopic images
of vaginal secretions. Generally, there are many complicated
ingredients in these images, and different from the gram stain
method, no color information can be used. Obviously, the texture
information of these cells becomes the main feature in the
classification of these ingredients. After careful observation of
difference of these two kinds of cells, we found the surface of
clue cells is rougher. So, we extract texture features of those
cells using the multi-scale texture energy descriptor which can
reflect the difference of these two kinds of cells in different scales
effectively. After that, the traditional SVM classifier is employed
for the classification. The experimental results show that our
method can effectively complete the classification task.
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I. INTRODUCTION

Microscopic examination is a simple and effective method
to diagnose bacterial vaginosis [1]. And the number of clue
cells is a very important index in the diagnosis of bacterial
vaginosis. At present, the frequently-used detection method of
clue cells is the Gram-staining microscopy, by which the clue
cells can be easily recognized according to different colors
due to the fact that the clue cells show positive reaction after
gram staining. Although the Gram-stain can help us easily
identify clue cells, the cumbersome operating procedures and
other factors lead to low detection efficiency. From Fig. 1, we
can see the difference of surface textures between epithelial
cells and clue cells, the surface of former is smoother while
the latter is rougher (A large number of gardnerella vaginalis
is attached to the clue cell surface). So texture feature is a
very important factor to distinguish these two kinds of cells.

Fig. 1. Epithelial cells and clue cells in wet mount. (a) Epithelial cells. (b)
clue cells.

1) Related works.: Texture analysis is a very important
task in the field of image processing, and many researchers
have proposed many algorithms to analyze different textures.
Tuceryan and Jain [2] divided these algorithms into four cate-
gories: statistical methods, geometrical methods, model based
methods and signal processing methods. The statistical method
has been extensively applied due to its strong adaptability
and practicability. Autocorrelation function method is a kind
of Statistical Methods proposed by Sklansky [3] in 1978.
Autocorrelation function can measure the degree of roughness
of the spatial structure of texture, but it doesn’t work for
the irregular natural textures. Researchers usually combine it
with other methods to improve its performance [4], [5], [6].
Haralick proposed Gray Level Co-occurrence Matrix (GLCM)
[7], which has become one of the most well-known and widely
used texture features, and can estimate image properties related
to second-order statistics. GLCM is an N ×N matrix, where
N is the number of gray levels in an image. The element of
GLCM is the number of special gray level distribution patterns
in an image and 14 texture features can be calculated from
GLCM. Ulaby et al. [8] found that only 4 features (energy,
contrast, correlation and entropy) are uncorrelated and higher
classification accuracy can be obtained from these 14 features.
GLCM can well reflect the spatial distribution characteristics
of texture, and based on GLCM many intensive researches
have been done by researchers [9], [10], [11]. Local Binary
Patterns (LBP) [12] has achieved remarkable results in texture
classification and been widely used in the field of medical
image processing and face detection. LBP labels pixels of an
image by thresholding the 3 × 3-neighborhood of each pixel
with the center value and considering the result as a binary
number. Then the texture descriptor can be defined by the
histogram of the labels[13]. But the original LBP descriptor’s
ability is limited by its small spatial support area. And Ojala
improved the LBP [14] in 2002. In recent years, researchers
have made a series of in-depth researches on LBP and put
forward many improved methods, such as DLBP [15], CLBP
[16], DDLBP [17], scLBP [18] and SSLBP [19], etc.

Although many texture descriptors have achieved good
experimental results in practical applications, there are still
many deficiencies. Researchers have tried to improve the
performance of texture descriptors from multi-scale analy-
sis. Pyramid [20] and wavelet transform method [21] are
commonly used in multi-scale analysis. Pyramid transform
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lays the theoretical foundation for multi-scale analysis and
multiresolution image decomposition. Researchers have done
many researches on how to extract texture features in multi-
scale space. Lang, et al. [22] developed an algorithm through
a unique multi-scale texture identifier integrated in a level-set
framework to capture the speculated boundary of the lesion
in the ultrasonic image. Abry et al. [23] used an anisotropic
multi-scale representation of texture, the hyperbolic wavelet
transform (HWT), to classify photographic prints. Although
so many texture analysis methods have been proposed, it is
very hard to find a paper for the classification of epithelial
cells and clue cells. The other problem in cell classification
is the choice of classifier. Researchers have proposed a lot
of classifier algorithms, such as, decision tree [24], [25],
artificial neural network (ANN) [26], support vector machine
(SVM) [27], [28], [29], Bayesian classifier [30], [31] and
boosting algorithm [32], [33], [34], etc. In recent years, there
are many articles about the classification that have been
published [35], [36], [37], [38].

2) Our Method: To improve the detection efficiency, we use
the different texture features of epithelial cells and clue cells to
distinguish these two types of cells. With this method, we don’t
have to go through the complicated process of Gram stain.
After observing a large number of these two kinds of cells,
we find distinct differences between them in different scales.
The differences are mainly reflected in the smooth degree of
surface texture. In small scale, the surface of epithelial cells is
flat, while clue cells’ is uneven. In large scale, epithelial cells’
surface is smoother than clue cells’. First, using the multi-
scale energy extraction operators (introduced in section II) to
compute the energy distribution maps of an image. Then, cal-
culating the local texture features descriptors from the energy
distribution maps. Finally, classifying the texture by using the
local texture features descriptors. Because the classification
problem in this paper is a binary classification problem, we
choose the SVM classifier to do this task considering its strong
ability to interpret and access.

II. MULTI-SCALE TEXTURE ANALYSIS

Different textures will show different characteristics in the
same scale space. The same texture will have different char-
acteristics in different scale spaces, which are the reasons that
we use multi-scale texture analysis in our method.

A. Multi-scale Analysis

The multi-scale analysis method in this paper is different
from the original pyramid. We change the size of the operator
rather than down-sampling the image to achieve the purpose
of multi-scale analysis. Down-sampling may lose a lot of
information when we drop the pixels from the original image,
while our method expands the operator’s size which can
preserve more image information. What’s more, this type of
multi-scale analysis can use the integral image to accelerate
the operation (inspired by surf algorithm). These steps of the
multi-scale analysis method are described as follows.

First, the image is mapped into multi-scale feature space
S (Note: S = {s1, s2, · · · , sN}, N is the space’s number)
using the multi-scale feature extraction operator P , P =
{p1, p2, · · · , pN}. Then, each pixel’s local texture features
descriptors vi (i = 1, 2, · · · , N) is calculated from each scale
space. Finally, all the local texture features descriptors are
combined into one feature descriptor V = [v1,v2, · · · ,vN ].
Thus, V is the texture feature descriptor of each pixel. Fig. 2
shows each step of the multi-scale analysis.

Fig. 2. Multi-scale analysis.

The multi-scale feature extraction operator P is a set of
operators of the same type, but each operator has different
scale (defined by S). Each value in the scale space si contains
the information about the corresponding local area in the
original image. For example, si(x, y) contains the mean of
those pixel values in the local area of the image I with (x, y)
as the center after the operation of Eq. 1. The amount of
information contained in the same location in different scale
spaces is also different. Furthermore, P can be defined as any
local feature operator, such as edge detection operator, LBP
operator, GLCM operator and energy operator, etc. And the
output of P is not necessary to be a constant, it can also be a
matrix.

si(x, y) = pi(I(x, y)), pi(·) = mean(·), i = 1, 2, · · · , N (1)

The local texture features descriptor V is a very important
factor in our method because it is directly related to the
accuracy of classification. The selection of V is very flexible.
Such as mean, autocorrelation, energy, entropy and variance,
etc. One or more values can be selected as features into V
according to the texture’s attribute.

B. Multi-scale Texture Energy

The main difference between epithelial cells and clue cells
is the degree of surface roughness. So, we use the local
energy operator (see Eq. 2) as the multi-scale feature extractor
P . Laws [39] use the “absolute value windowing” filter to
measure the local texture energy on the filtered image (filtered
by a set of “texture energy” transforms, which can be made
invariant to changes in luminance and contrast). To simplify
operation, we use Eq. 2 as the local texture energy operator,
which is invariant to changes in luminance and contrast, to
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measure the local energy on the original image.

E(x, y) =
1

n2

k∑
i=−k

k∑
j=−k

[I(i, j|x, y)− µ(x, y)]2 (2)

µ(x, y) =
1

n2

k∑
i=−k

k∑
j=−k

I(i, j|x, y) (3)

Where µ(x, y) in Eq. 3 is the mean of pixel values in window
W . n2 is the size of window W , and n = 2k + 1, k ∈ S, S
is the set of space scale. I(x, y) is the pixel value at (x, y) of
the image.

The result of Eq. 2 is different from Eq. 4 (the commonly
used energy formula). Through two equations, we can see that
Eq. 2 is more appropriate to measure the roughness of the
texture in the local window. As shown in the subfigure (b) of
Fig. 3, the result of Eq. 4, the energy of the inner part of a
grain of rice is very high, although its interior is very flat. This
energy cannot properly measure the roughness of the texture.
In the subfigure (c) of Fig. 3, the energy is concentrated around
the edges of rices, and the energy of the interior area is very
low.

E(x, y) =
1

n2

k∑
i=−k

k∑
j=−k

[I(i, j|x, y)]2 (4)

(a) (b) (c)
Fig. 3. The energy distribution maps by different equations. (a) Original
image. (b) Energy distribution maps by Eq. 4. (c) Energy distribution maps
by Eq. 2.

The space scale set S is also very important for the
classification accuracy. Fig. 4 shows the energy distribution
maps of the epithelial cells and clue cells in different scale
spaces. The energy of epithelial cells is mainly distributed
around edges and nucleus. While clue cells’ is more uniform
and higher due to its rough surface.

Fig. 4. Energy distribution of epithelial cells and clue cells in different scale
spaces. (a) Epithelial cells and clue cells. (b) to (f) The energy distribution
maps in S = {3, 4, 5, 6, 7}.

III. EXPERIMENTS AND DISCUSSION

In order to verify the effectiveness of our method for the
classification of epithelial cells and clue cells, we compare our
method with uniform LBP (ULBP), CLBP and GLCM. We use
all the microscopic images of vaginal secretions containing
epithelial cells and clue cells to verify the accuracy of four
methods. In this comparative experiment, we focus on the
effectiveness of the features that extracted by four methods.
So, we employ the same classifier SVM in four methods to do
this classification task. Parameters of these four methods are
given in Table I. From Table I, we can easily get the dimension
of the feature extracted by each method. In ULBP, the bin’s
number determines that the dimension of the feature vector is
59. CLBP contains two parts information the sign components
and magnitude components. Each component contains 59 bins,
so, the feature vector dimension is 118. GLCM contains 4
co-occurrence matrices in 4 directions and extracts 4 features
from each co-occurrence matrix. So, the dimension of feature
vector is 16. Our method has 5 scale spaces and each scale
space contains 4 features. Therefore, the feature vector consists
of 20 elements.

TABLE I
PARAMETERS SETTING OF EACH METHOD.

Method ID Settings

ULBP Neighborhood = 8, radius = 1, bin’s number = 59.

CLBP Neighborhood = 8, radius = 1,
Features=[CLBP S,CLBP M ].

GLCM
Distance = 1, Angle = {0, 45, 90, 135},
LevelNum = 8,
Features=[energy, contrast, entropy, correlation].

Our Method P=Energy operator, S = {3, 4, 5, 6, 7},
v = [mean, energy, contrast, entropy].

The accuracy of the four methods is shown in Table II.
Accuracy of CLBP is 9% higher than that of ULBP, because
the CLBP retains more information in the original image than
ULBP. Accuracy of GLCM is higher than CLBP although the
dimension of the feature vector of GLCM is lower than that of
CLBP. The reasonable explanation is that the feature vector of
CLBP contains too much redundant information and the infor-
mation contained in GLCM’s feature vector is more effective.
Due to the fact that the main difference between epithelial
cells and clue cells is the roughness of the surface, and we
use the multi-scale texture energy descriptor to describe the
difference. So, our method has the best performance among
the four methods.

TABLE II
THE CLASSIFICATION ACCURACY OF EACH METHOD ON EPITHELIAL

CELLS AND CLUE CELLS.

Method ID ULBP CLBP GLCM Our Method

Accuracy 83.44% 92.48% 92.86% 94.35%

To test our method in practical application, we compare the
proposed method with the other three algorithms in clinical
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microscopic images. The other components (lactobacilli, white
blood cells and impurities, etc.) in the image may bring
negative influence on the accuracy of the classification. So,
we use the former method proposed in ref [40], to remove the
other components from the image. As shown in Fig. 5, our
method is better than the other methods for the classification
of clues cells, but there are still some problems. For example,
the overlap of the epithelial cells and the clue cells may have
a negative effect on the classification as shown in subfigure
3f). This is because the texture features of pixels belonging
to epithelial cells are influenced by the neighboring pixels
belonging to clue cells.

Fig. 5. Classify result of four methods. (a) Original images. (b) Ground
truth. (c) ULBP. (d) CLBP. (e) GLCM. (f) Our Method.

IV. CONCLUSIONS

In this paper, we present a novel method to classify ep-
ithelial cells and clue cells in wet mount microscopic images
of vaginal secretions based on multi-scale texture analysis.
The experimental results show that our method can effectively
classify epithelial cells and clue cells. Due to the fact that
our method can skip the complicated process of Gram stain,
it can save a mass of time and realize automatic processing
easily. But there are still some problems in our method. For
example, the adhesion between the components will affect the
classification accuracy. And at the early stage of evolutional
process from epithelial cells to clue cells, the classification
result is not very well. We will address these issues in future
research.

ACKNOWLEDGMENT

This work is supported by University Scientific Projects
of Shandong Province (J14LN15) and Shandong Provincial
Major Science and Technology Special Project(New Emergent
Industries) (2015ZDXX0801A03).

REFERENCES

[1] I. Mylonas and F. Bergauer, “Diagnosis of vaginal discharge by wet
mount microscopy: a simple and underrated method.” Obstetrical &
Gynecological Survey, vol. 66, no. 6, pp. 359–68, 2011.

[2] M. Tuceryan and A. K. Jain, “Handbook of pattern recognition
& computer vision,” C. H. Chen, L. F. Pau, and P. S. P. Wang,
Eds. River Edge, NJ, USA: World Scientific Publishing Co.,
Inc., 1993, ch. Texture Analysis, pp. 235–276. [Online]. Available:
http://dl.acm.org/citation.cfm?id=178866.178899

[3] J. Sklansky, “Image segmentation and feature extraction,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 8, no. 4, pp. 237–247,
April 1978.

[4] Y. Horikawa, Use of Autocorrelation Kernels in Kernel Canonical
Correlation Analysis for Texture Classification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 1235–1240. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30499-9 192

[5] M. Mehri, V. C. Kieu, M. Mhiri, P. Hroux, P. Gomez-Krmer, M. A.
Mahjoub, and R. Mullot, “Robustness assessment of texture features for
the segmentation of ancient documents,” in Document Analysis Systems
(DAS), 2014 11th IAPR International Workshop on, April 2014, pp.
293–297.

[6] R. T. Ionescu, A. L. Popescu, and D. Popescu, Texture Classification
with Patch Autocorrelation Features. Cham: Springer International
Publishing, 2015, pp. 1–11. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-26532-2 1

[7] R. M. Haralick, “Statistical and structural approaches to texture,” Pro-
ceedings of the IEEE, vol. 67, no. 5, pp. 786–804, 1979.

[8] F. T. Ulaby, F. Kouyate, B. Brisco, and T. H. L. Williams, “Textural
infornation in sar images,” IEEE Transactions on Geoscience & Remote
Sensing, vol. 24, no. 2, pp. 235–245, 1986.

[9] G. ming Xian, “An identification method of malignant and benign
liver tumors from ultrasonography based on {GLCM} texture
features and fuzzy {SVM},” Expert Systems with Applications,
vol. 37, no. 10, pp. 6737 – 6741, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417410001065

[10] S. Park, B. Kim, J. Lee, J. M. Goo, and Y. G. Shin, “Ggo nodule volume-
preserving nonrigid lung registration using glcm texture analysis,” IEEE
Transactions on Biomedical Engineering, vol. 58, no. 10, pp. 2885–
2894, Oct 2011.

[11] P. Yang and G. Yang, “Feature extraction using dual-tree
complex wavelet transform and gray level co-occurrence matrix,”
Neurocomputing, vol. 197, pp. 212 – 220, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231216003623

[12] T. Ojala and I. Harwood, “A comparative study of texture measures
with classification based on feature distributions,” Pattern Recognition,
vol. 29, no. 1, pp. 51–59, 1996.

[13] G. Zhang, X. Huang, S. Z. Li, Y. Wang, and X. Wu, Boosting Local
Binary Pattern (LBP)-Based Face Recognition. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 179–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30548-4 21
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